The Torrent featured thrust vectoring and fly-by-light equipment, eliminating the need for a horizontal rudder and giving it the ability to use the short runways found on these new colonies; however, the bomber required a full runway and (occasionally) rocket assistance when carrying a full bomb load. With a crew of one officer, three enlisted and two gunners, the aircraft could carry a total of thirty tons of ordnance split between an internal bomb bay and external hardpoints, was protected by three and a half tons of Hubris Heavy armor, and with thirteen tons of fuel could reach a target half a world away.[2][3]
Continual upgrades kept the aircraft in service, including the mounting of one of the earliest ECM suites, the Squealer I, in the 2650s. As time passed, between the twenty-fourth and twenty-fifth centuries, newly introduced aerospace fighters came onto the scene and proved themselves superior to conventional aircraft like the Torrent. Since its tendency to fly low and slow made it highly vulnerable to these new fighters, the Torrent was forcibly retired from most planetary militias, but not all. General Aleksandr Kerensky brought almost a full wing of these aircraft with him during the Star League Defense Force's Exodus, where they later saw action during the Pentagon Civil War, notably with the newly formed Clans forces.[2][3]
Slow Bomb torrent
Download File: https://urlcod.com/2vE7t9
So the Norco makes more sense when spinning leisurely up smooth fire road climbs followed by rowdy steep descents. In fact, due to its weight and slower rolling tyres, it feels almost pedestrian on anything other than the steepest most technical descents. Which make the elevated BB height even harder to comprehend. With the higher BB you need to raise the handle bar quite a bit to help clock your body position rearward and counteract the higher centre of gravity. The end result is a balance ride, albeit an elevated one.
A neutron bomb, officially defined as a type of enhanced radiation weapon (ERW), is a low-yield thermonuclear weapon designed to maximize lethal neutron radiation in the immediate vicinity of the blast while minimizing the physical power of the blast itself. The neutron release generated by a nuclear fusion reaction is intentionally allowed to escape the weapon, rather than being absorbed by its other components.[3] The neutron burst, which is used as the primary destructive action of the warhead, is able to penetrate enemy armor more effectively than a conventional warhead, thus making it more lethal as a tactical weapon.
The concept was originally developed by the United States in the late 1950s and early 1960s. It was seen as a "cleaner" bomb for use against massed Soviet armored divisions. As these would be used over allied nations, notably West Germany, the reduced blast damage was seen as an important advantage.[4][5]
In a standard thermonuclear design, a small fission bomb is placed close to a larger mass of thermonuclear fuel. The two components are then placed within a thick radiation case, usually made from uranium, lead or steel. The case traps the energy from the fission bomb for a brief period, allowing it to heat and compress the main thermonuclear fuel. The case is normally made of depleted uranium or natural uranium metal, because the thermonuclear reactions give off extraordinarily large numbers of high-energy neutrons that can cause fission reactions in the casing material. These can add considerable energy to the reaction; in a typical design as much as 50% of the total energy comes from fission events in the casing. For this reason, these weapons are technically known as fission-fusion-fission designs.
In a neutron bomb, the casing material is selected either to be transparent to neutrons or to actively enhance their production. The burst of neutrons created in the thermonuclear reaction is then free to escape the bomb, outpacing the physical explosion. By designing the thermonuclear stage of the weapon carefully, the neutron burst can be maximized while minimizing the blast itself. This makes the lethal radius of the neutron burst greater than that of the explosion itself. Since the neutrons are absorbed or decay rapidly, such a burst over an enemy column would kill the crews but leave the area able to be quickly reoccupied.
The conception of neutron bombs is generally credited to Samuel T. Cohen of the Lawrence Livermore National Laboratory, who developed the concept in 1958.[14] Initial development was carried out as part of projects Dove and Starling, and an early device was tested underground in early 1962. Designs for a "weaponized" version were developed in 1963.[15][16]
Development of two production designs for the army's MGM-52 Lance short-range missile began in July 1964, the W63 at Livermore and the W64 at Los Alamos. Both entered phase three testing in July 1964, and the W64 was cancelled in favor of the W63 in September 1964. The W63 was in turn cancelled in November 1965 in favor of the W70 (Mod 0), a conventional design.[15] By this time, the same concepts were being used to develop warheads for the Sprint missile, an anti-ballistic missile (ABM), with Livermore designing the W65 and Los Alamos the W66. Both entered phase three testing in October 1965, but the W65 was cancelled in favor of the W66 in November 1968. Testing of the W66 was carried out in the late 1960s, and it entered production in June 1974,[15] the first neutron bomb to do so. Approximately 120 were built, with about 70 of these being on active duty during 1975 and 1976 as part of the Safeguard Program. When that program was shut down they were placed in storage, and eventually decommissioned in the early 1980s.[15]
Development of ER warheads for Lance continued, but in the early 1970s attention had turned to using modified versions of the W70, the W70 Mod 3.[15] Development was subsequently postponed by President Jimmy Carter in 1978 following protests against his administration's plans to deploy neutron warheads to ground forces in Europe.[17] On November 17, 1978, in a test the USSR detonated its first similar-type bomb.[citation needed] President Ronald Reagan restarted production in 1981.[17] The Soviet Union renewed a propaganda campaign against the US's neutron bomb in 1981 following Reagan's announcement. In 1983 Reagan then announced the Strategic Defense Initiative, which surpassed neutron bomb production in ambition and vision and with that, neutron bombs quickly faded from the center of the public's attention.[citation needed]
According to the Cox Report, as of 1999 the United States had never deployed a neutron weapon. The nature of this statement is not clear; it reads "The stolen information also includes classified design information for an enhanced radiation weapon (commonly known as the "neutron bomb"), which neither the United States, nor any other nation, has ever deployed."[23] However, the fact that neutron bombs had been produced by the US was well known at this time and part of the public record. Cohen suggests the report is playing with the definitions; while the US bombs were never deployed to Europe, they remained stockpiled in the US.[24]
In addition to the two superpowers, France and China are known to have tested neutron or enhanced radiation bombs. France conducted an early test of the technology in 1967[25] and tested an "actual" neutron bomb in 1980.[26] China conducted a successful test of neutron bomb principles in 1984 and a successful test of a neutron bomb in 1988. However, neither of those countries chose to deploy neutron bombs. Chinese nuclear scientists stated before the 1988 test that China had no need for neutron bombs, but it was developed to serve as a "technology reserve", in case the need arose in the future.[27]
Although no country is currently known to deploy them in an offensive manner, all thermonuclear dial-a-yield warheads that have about 10 kiloton and lower as one dial option, with a considerable fraction of that yield derived from fusion reactions, can be considered able to be neutron bombs in use, if not in name. The only country definitely known to deploy dedicated (that is, not dial-a-yield) neutron warheads for any length of time is the Soviet Union/Russia,[6] which inherited the USSR's neutron warhead equipped ABM-3 Gazelle missile program. This ABM system contains at least 68 neutron warheads with a 10 kiloton yield each and it has been in service since 1995, with inert missile testing approximately every other year since then (2014). The system is designed to destroy incoming endoatmospheric nuclear warheads aimed at Moscow and other targets and is the lower-tier/last umbrella of the A-135 anti-ballistic missile system (NATO reporting name: ABM-3).[7]
Considerable controversy arose in the US and Western Europe following a June 1977 Washington Post exposé describing US government plans to equip US Armed Forces with neutron bombs. The article focused on the fact that it was the first weapon specifically intended to kill humans with radiation.[31][32] Lawrence Livermore National Laboratory director Harold Brown and Soviet General Secretary Leonid Brezhnev both described neutron bombs as a "capitalist bomb", because it was designed to destroy people while preserving property.[33][34][need quotation to verify]
Neutron bombs are purposely designed with explosive yields lower than other nuclear weapons. Since neutrons are scattered and absorbed by air,[2] neutron radiation effects drop off rapidly with distance in air. As such, there is a sharper distinction, relative to thermal effects, between areas of high lethality and areas with minimal radiation doses.[3] All high yield (more than c. 10 kiloton) nuclear bombs, such as the extreme example of a device that derived 97% of its energy from fusion, the 50 megaton Tsar Bomba, are not able to radiate sufficient neutrons beyond their lethal blast range when detonated as a surface burst or low altitude air burst and so are no longer classified as neutron bombs, thus limiting the yield of neutron bombs to a maximum of about 10 kilotons. The intense pulse of high-energy neutrons generated by a neutron bomb is the principal killing mechanism, not the fallout, heat or blast. 2ff7e9595c
Commentaires